Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response
نویسندگان
چکیده
BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε' ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.
منابع مشابه
Ultrafast photoinduced mechanical strain in epitaxial BiFeO3 thin films
Related Articles Formation of stress-controlled, highly textured, α-SiC thin films at 950°C J. Appl. Phys. 112, 013535 (2012) Epitaxial strain-induced changes in the cation distribution and resistivity of Fe-doped CoFe2O4 Appl. Phys. Lett. 101, 021907 (2012) Strain-induced effects on the dielectric constant for thin, crystalline rare earth oxides on silicon Appl. Phys. Lett. 100, 232905 (2012) ...
متن کاملStrain-induced polarization rotation in epitaxial (001) BiFeO3 thin films.
Direct measurement of the remanent polarization of high quality (001)-oriented epitaxial BiFeO3 thin films shows a strong strain dependence, even larger than conventional (001)-oriented PbTiO3 films. Thermodynamic analysis reveals that a strain-induced polarization rotation mechanism is responsible for the large change in the out-of-plane polarization of (001) BiFeO3 with biaxial strain while t...
متن کاملStabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films
Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron micros...
متن کاملStructural Instability of Epitaxial (001) BiFeO3 Thin Films under Tensile Strain
We explore BiFeO3 under tensile strain using first-principles calculations. We find that the actual structures are more complex than what had been previously thought, and that there is a strong shear deformation type structural instability which modifies the properties. Specifically, we find that normal tensile strain leads to structural instabilities with a large induced shear deformation in (...
متن کاملDEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS
Title of Dissertation: DEPOSITION AND CHARACTERIZATION OF MULTIFERROIC BiFeO3 THIN FILMS Junling Wang, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Manfred Wuttig, Department of Materials Science and Engineering Multiferroics, defined as materials with coexistence of at least two of the electric, elastic, and magnetic orders, have attracted enormous research activities recentl...
متن کامل